New York Investment Network


Recent Blog


Pitching Help Desk


Testimonials

"I made several great connections through your network. In fact, I was able to over fund my project. I also listed with another network that cost 3X as much and the leads were nowhere near as solid as the investors I met through this network. I will definitely only be using this network in the future. "
Jason A.

 BLOG >> August 2013

Complex Decision Trees [Decision Trees
Posted on August 21, 2013 @ 02:13:00 PM by Paul Meagher

In my last blog I offered up a video tutorial on how to construct simple decision trees and analyze them using expected values. It is easy to object that these binary decision trees are too simple to represent the complex decision problems that we are confronted with each day. Before you object too loudly, you should examine what a more complex decision tree might look like and the issues that arise when we add more complexity to our decision trees.

A decision tree can become more complex in two basic ways. We can add more intermediate acts or we can add more intermediate events. In simple decision trees we have a binary set of Actions (apply 90 lb nitrogen, apply 110 lb nitrogen) leading to a binary set of Events (e.g., probability of low rainfall, probability of high rainfall) and each combination of Actions and Events lead to an Outcome. See my blog, Representing Decisions with Graphviz, for more details.

So one way we can add complexity to a decision tree, beyond just adding more than 2 branches for each action and event node, is to add intermediate actions and/or events to our decision tree. So, for example, our decision problem might involve the act of either applying 90lbs or 110lbs of Nitrogen per acre to our wheat crop. We might also have to choose between the actions of applying the Nitrogen at time X or at time Y. The combination of these actions can then lead into a season with either a low summer rainfall event or a high summer rainfall event. We can represent a fragment of this decision tree generically with the following diagram:

The diagram was constructed using Graphviz and the dot file I used to construct it looks like this:

This is just a fragment of a multistep decision problem. As you can see, the number of terminal branches in this decision problem explodes as we add more intermediate action or event nodes. This does not prevent us from using decision trees to help us make better decisions, but it does give us advance warning that we should be very sure that it is necessary to introduce intermediate actions or events into our decision tree before we do so as they add considerable complexity to the decision tree. Decision trees are not meant to capture the minute details of a decision problem, just the high level actions and events that impact upon the decision. The choice of action and event nodes, just like the assignment of probabilities to event nodes, involves alot of subjective judgement. The process of formalizing it all into a decision tree, however, brings the whole exercise out of subjective reality into consensus reality where others can comment, disagree, or agree with the manner in which you have framed the decision problem.

Permalink 

Computing Expected Values [Decision Trees
Posted on August 20, 2013 @ 01:47:00 PM by Paul Meagher

So you have a simple decision tree leading from actions, to events, to outcomes. You have labelled the probability of your events, the costs and payoffs associated with actions and outcomes, and you are wondering how you can use all this information to pick a course of action. One answer is that you can compute the expected value associated with each outcome and make your decision based upon the course of action that yields the highest expected value (e.g., highest average profit).

Fortunately, I do not have to explain what an expected value is or how to compute it because there is an excellent tutorial available that explains it all. So, sit back, and learn from MBA Bullshit how to use a decision tree to compute expected values and how you can use expected values to help you decide on a course of action.

Permalink 

A Theory of Entrepreneurship [Entrepreneurship
Posted on August 15, 2013 @ 08:59:00 AM by Paul Meagher

There are a few theories out there that try to explain successful entrepreneurship. Currently, the best candidate explanation is called the "Lean Startup" theory. It has many useful things to say about how to adapt a service to a market base in a reliable and cost-effective manner. Universities looking to offer courses on entrepreneurship now use Lean Startup Theory as part of the foundational framework for their curriculum. It has some traction.

It is a difficult task to try to explain why some entrepreneurs are successful while others are not. The very definition of what an entrepreneur is fuzzy. Are small business owners entrepreneurs? Or, is that title reserved only for those are trying to bring an innovative product to market? Is the mother who sells Avon on the side an entrepreneur? What about farmers tending to their crops and animals? Or those who fish the oceans? An actor looking for gigs? In my view, entrepreneurship pervades all of these activities and a theory of entrepreneurship should explain why some mothers, farmers, fishers, and actors are more financially successful than others. While being "lean" may be part of the explanation, I conjecture that a factor that has more explanatory weight is how many lines-of-business they have established and are in the process of realistically establishing.

Lines-Of-Business Theory

My theory on successful entrepreneurship can be most easily understood using a farming business as an example. Farmer Joe and Farmer Sally both own farms of equal size and capacity to raise crops and animals. It turns out, however, that Farmer Sally is more successful than Farmer Joe as measured by the amount of profit generated at the end of the year. How might we explain the difference?

If we examine Joe's operation, we might observe that he is raising beef cattle and spends most of his time doing all the chores required to raise his animals. Some years Joe does well and other years not so well, much depends on the price of beef when he is ready to sell. Sally also has some animals, some hens and sheep, and also vegetable gardens, an orchard, and rents out rooms in her house as a bed and breakfast. Sally has not placed all of her eggs in one basket. Instead she has diversified into several lines of business which generate separate streams of income (e.g., sells eggs, lamb, vegetables, apples, and rooms). Her cashflow is also more regular than Joe's. Sally is not making millions of dollars but she is making a comfortable living, is not worrying about how to pay her bills, and has saved money to buy plants and equipment for a new line of business for next year (growing blueberries). Sally is growing her business each year by adding a new line of business each year. Some years, one of her lines of business might do better (room rentals) than another one (pests damage to crops) but overall they compensate for each other because they are fairly separate lines of business.

It is easy to see that having multiple profitable lines-of-business can explain why Sally is more successful than Joe. At the very least, we could use the lines-of-business theory to explain why some farmers are more successful than other farmers - they have more than one line of business, they have chosen lines of business that can compensate each other, they have chosen profitable lines of business, they are investing in new lines-of-business each year, and they are able to manage all of these lines-of-business without a marital, health or stress breakdown.

So does this line-of-business theory explain why some entrepreneurs are successful? It would suggest that they are successful because they have more than one profitable line-of-business, that they have used one line-of-business to bootstrap another line-of-business, that their focus is always divided between expanding existing lines-of-business while also exploring and investing in new lines-of-business. This theory, if true, would have some explanatory force in explaining differential success of entrepreneurs and also offers some suggestions as to what to look for when trying to explain entrepreneur success (define, count, and measure each line of business and see if there is a difference among entrepreneurs that correlates with profit level). It also explains why some mothers, farmers, and actors are more entrepreneurial than others - it has to do with wanting to setup new lines of business (another stream of income). This theory says that successful entrepreneurs do not just do one thing well, they do multiple things well and are always engaged in finding and establishing profitable new lines-of-business.

Permalink 

Layout, Weights, and Highlighting with Graphviz [Decision Trees
Posted on August 8, 2013 @ 04:56:00 AM by Paul Meagher

I introduced the Graphviz program in my last blog. In today's blog I want to go a little deeper into the DOT language to show how you can achieve three useful effects using the DOT language. The three effects are:

  • Change the overall layout of the graph. Instead of starting our decision tree from the top, I would prefer to start it from the left side of the canvas and expand it towards the right side of the canvas (i.e., left-to-right reading order). I can do this by adding the command rankdir=LR; to my dot file.
  • Would be nice to show probability values on links going into event nodes. For example, the probability of high rain fall this season. We do this by adding a bracket next to link commands and specifying the value for the "label" attribute (e.g., Action -> HighRainFall[label="0.6"];).
  • If you are trying to highlight a path through a decision tree, then there are ways to highlight a path in graphviz. One way would be to thicken the line and add red coloration to each link in the path (e.g., Action -> LowRainFall[label="0.4",color=red,penwidth=3.0]; ).

If we put all these elements together in one dot program file, it would look like this:

digraph { 
  
  rankdir=LR;

  Action -> LowRainFall[label="0.4",color=red,penwidth=3.0]; 
  Action -> HighRainFall[label="0.6"]; 

}

If we load this dot file into the graphviz program "dot", it will generate this graph:

What we have here is a fragment of a graph. A fragment like this might appear in your decision tree leading from an action node to an event node. This is how we can get probabilities to appear on our graphical representations of a decision problem. Also, I like to orient the tree from left-to-right because if you have a large branchy tree it can more easily be printed off whereas top-to-bottom trees are hard to print off and involve alot of horizontal scrolling to view. Finally, when you make a decision to pursue a particular course of action, you can highlight that course of action graphically with a thick red pen effect.

Permalink 

 Archive 
 

Archive


 November 2023 [1]
 June 2023 [1]
 May 2023 [1]
 April 2023 [1]
 March 2023 [6]
 February 2023 [1]
 November 2022 [2]
 October 2022 [2]
 August 2022 [2]
 May 2022 [2]
 April 2022 [4]
 March 2022 [1]
 February 2022 [1]
 January 2022 [2]
 December 2021 [1]
 November 2021 [2]
 October 2021 [1]
 July 2021 [1]
 June 2021 [1]
 May 2021 [3]
 April 2021 [3]
 March 2021 [4]
 February 2021 [1]
 January 2021 [1]
 December 2020 [2]
 November 2020 [1]
 August 2020 [1]
 June 2020 [4]
 May 2020 [1]
 April 2020 [2]
 March 2020 [2]
 February 2020 [1]
 January 2020 [2]
 December 2019 [1]
 November 2019 [2]
 October 2019 [2]
 September 2019 [1]
 July 2019 [1]
 June 2019 [2]
 May 2019 [3]
 April 2019 [5]
 March 2019 [4]
 February 2019 [3]
 January 2019 [3]
 December 2018 [4]
 November 2018 [2]
 September 2018 [2]
 August 2018 [1]
 July 2018 [1]
 June 2018 [1]
 May 2018 [5]
 April 2018 [4]
 March 2018 [2]
 February 2018 [4]
 January 2018 [4]
 December 2017 [2]
 November 2017 [6]
 October 2017 [6]
 September 2017 [6]
 August 2017 [2]
 July 2017 [2]
 June 2017 [5]
 May 2017 [7]
 April 2017 [6]
 March 2017 [8]
 February 2017 [7]
 January 2017 [9]
 December 2016 [7]
 November 2016 [7]
 October 2016 [5]
 September 2016 [5]
 August 2016 [4]
 July 2016 [6]
 June 2016 [5]
 May 2016 [10]
 April 2016 [12]
 March 2016 [10]
 February 2016 [11]
 January 2016 [12]
 December 2015 [6]
 November 2015 [8]
 October 2015 [12]
 September 2015 [10]
 August 2015 [14]
 July 2015 [9]
 June 2015 [9]
 May 2015 [10]
 April 2015 [9]
 March 2015 [8]
 February 2015 [8]
 January 2015 [5]
 December 2014 [11]
 November 2014 [10]
 October 2014 [10]
 September 2014 [8]
 August 2014 [7]
 July 2014 [5]
 June 2014 [7]
 May 2014 [6]
 April 2014 [3]
 March 2014 [8]
 February 2014 [6]
 January 2014 [5]
 December 2013 [5]
 November 2013 [3]
 October 2013 [4]
 September 2013 [11]
 August 2013 [4]
 July 2013 [8]
 June 2013 [10]
 May 2013 [14]
 April 2013 [12]
 March 2013 [11]
 February 2013 [19]
 January 2013 [20]
 December 2012 [5]
 November 2012 [1]
 October 2012 [3]
 September 2012 [1]
 August 2012 [1]
 July 2012 [1]
 June 2012 [2]


Categories


 Agriculture [77]
 Bayesian Inference [14]
 Books [18]
 Business Models [24]
 Causal Inference [2]
 Creativity [7]
 Decision Making [17]
 Decision Trees [8]
 Definitions [1]
 Design [38]
 Eco-Green [4]
 Economics [14]
 Education [10]
 Energy [0]
 Entrepreneurship [74]
 Events [7]
 Farming [21]
 Finance [30]
 Future [15]
 Growth [19]
 Investing [25]
 Lean Startup [10]
 Leisure [5]
 Lens Model [9]
 Making [1]
 Management [12]
 Motivation [3]
 Nature [22]
 Patents & Trademarks [1]
 Permaculture [36]
 Psychology [2]
 Real Estate [5]
 Robots [1]
 Selling [12]
 Site News [17]
 Startups [12]
 Statistics [3]
 Systems Thinking [3]
 Trends [11]
 Useful Links [3]
 Valuation [1]
 Venture Capital [5]
 Video [2]
 Writing [2]